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Abstract. Magnetorheological fluids are Bingham type non-Newtonian 

fluids. In motion, the kinematic and energetic characteristics of the Bingham 

type fluid flow differ from the ones of the Newtonian fluid. MR fluids are 

energized by an external magnetic field influencing the slip stress. Bingham-type 

MR fluids form a central plug region moving at constant velocity. This 

paperwork analyzes the effect of external magnetic field on the flow velocity of 

magnetorheological fluids. The numerical modeling of the phenomenon shows 

that the magnetic field value has a significant influence on the fluid flow 

velocity.  
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1. Introduction  

 

Magnetorheological fluids are Bingham type non-Newtonian fluids that 

can be classified as smart fluids.  

In motion, the kinematic and energetic characteristics of the Bingham 

type fluid flow differ from the ones of the Newtonian fluid. The variation of the 
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unit tangent friction factor is defined by the equation
0

 
dV

dz
   , in which 0  

is deformation and 
dV

dz
  is shear stress. 

Magnetorheological fluids are energized by an external magnetic field 

influencing the slip stress.  

Bingham-type magnetorheological fluids form a central plug region 

moving at constant velocity.  

Considering the complex dynamics of the magnetically controlled 

fluids, it is hard to analyze them fully. To study the flow, mathematical models 

from the dynamics of real fluids plus mathematical models specific to 

electromagnetism is employed.  

The paperwork shows theoretical results obtained from studying the 

effect of the intensity of applied magnetic field H, respectively of magnetic 

induction B on the pressure differences of MR fluid flow in a pipe.  

 

2. Mathematical Models Used in Theoretical Research of 

Magnetorheological Fluid Flow 

 

MR fluids are non-Newtonian plastic fluids Bingham (Craig, 2003; 
Siginer et al., 1999; Chilton and Stainsby, 1998) characterized by the relation: 

 

0

dV

dz
    0                                                   (1) 

In which:  ‒ shear stress, 0 0 ( )B   ‒ deformation stress, .ct   ‒ fluid 

dynamic viscosity. 

 Considering that the magnetic induction B H  , in which  is 

environment permeability [  0 1    ], it results that the total friction of the 

MR fluid depends on the size of the magnetic induction B by the term  0 B . 

 If we assume that by using a coil a magnetic field is obtained, the 

magnetic induction value depends on the current I induced in N loops of the coil 

with length l, namely  B B I . 

 




I N
B

l


 
(2) 

 

 It results that MR fluid can be controlled if it flows in a circular pipe 

equipped with a coil run by current I. By regulating the intensity of current I, 

the deformation stress values vary.  

The Herschel-Bulkley model (Herschel and Bulkley, 1926) 
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] is employed to calculate the stress τ for magnetic induction values B > 0. 

 
1
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For the laminar flow, Chilton and Stainsby (1998) propose a formula (4) 

to calculate pressure drop. The equation needs an iterative solution 
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For the turbulent flow, the authors propose a method that needs 

knowing wall shear stress, but they do not provide a formula for it. The model 

was perfected by Hathoot: 

 

 
 

2 34 1

3 1
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perete

n VD aX bX cX
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3. Theoretical Model of Bingham-Type MR Fluid 

 Flow Dynamics in a Circular Pipe under the Influence of an  

External Magnetic Field 

 

In the case of Bingham type bodies, the kinematic and energy 

characteristics of the flow differ from those of the Newtonian fluids. According 

to the variation of the unit tangent friction factor, 
0

 
dV

dz
   , the distribution 

of velocities in the cross section of the pipe includes two sub-fields (Kciuk and 

Turczyn, 2006). In the central area of 
0

r  radius, the unit factor has a lower value 

that the flow limits . The fluid travels as a rigid system, apparently non-

deformable, like a cylindrical plug. The solid plug travels with a constant 

velocity with no modification in its geometry.  
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The value of the 
0

r  radius, which is the barrier between the two sub-

fields, depends on the rheological characteristics of the fluid.  

In the sub-field  0
;r r R , the stress exceeds the value of 

0
 and the 

character of the flow changes, Fig. 1. 

 

 
Fig. 1 ‒ Domains of the flow. 

 

The description of the laminar motion of fluids is made by using the 

Navier-Stokes equations written in cylindrical coordinates ( , , )r z . 
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 (6) 
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in which  , ,

V r z is the flow velocity of the real fluid being in permanent 

motion with the kinematic viscosity . 

The continuity equation in cylindrical coordinates is: 
 

 
1 1

0
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v v
r v
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

 (8) 
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It is considered the unidirectional and axially symmetrical flow with the 

velocity of 

V , in a cylindrical pipe with radius R and length l under the action 

of a pressure gradient. In these conditions, 0; 0; 0   r zv v v V .  

If mass forces are neglected, 0  r zf f f , and continuity equation 

is used in the required conditions, the equation of dynamic equilibrium results: 
 

2

2

1 
 



d V dV p

r dr zdr
                                            (9) 

 

Taking into account the expression of the friction factor for non-

Newtonian fluids 0 
dV

dr
   , it results that 

 

p

r r z

  
 

 
 (10) 

 

In the sub-field (1), the shear velocity is high and the fluid tends to have 

a Newtonian behavior. 

In the sub-field (2), the fluid moves with a constant velocity as a solid 

plug without being subject to shear.  

The relations of the flow velocities in the two areas under the action of 

the pressure gradient are determined by applying the limit conditions (barrier) 

for the flow velocity V . 

 The solution of the Eq. (1) is: 
 

  2 0
1 2ln

4
   

 

Dp
V r r r c r c

l



 
 (11) 

 

For 
0r r  (plug barrier) 

 
0

dV r

dr  
 

2

0 0 0
1 0

2

 
  

 

r Dp r
c

l



 
 (12) 

 

The c1 constant results and  V r  has the expression: 

 

  2 20 0
0 0 2ln ln

4 2
    

   

Dp Dp
V r r r r r r r c

l l

 

   
 (13) 

 

For r R  (at the wall)   0V R : 
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 The velocity,  V r   0;r r R  has the expression 
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 (14) 

 

 For determining the 0r radius of the plug, we consider inside the pipe a 

cylinder of 0r  radius being in equilibrium under the action of the pressure and 

friction forces (Fig. 1). 

From the equation of the dynamic equilibrium of forces, 

  2
1 2 0 0 02p p r r l     the following expression results for the plug radius: 

 

0
0

2


l
r

Dp
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 (15) 

 

 The traveling velocity 0V of the fluid plug is obtained from the relation 

of the velocity  V r  with the condition 0r r
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4. Theoretical Results Obtained by Numerical Simulation 

 
The numerical modeling was carried out for a MRF 132 magnetorheological 

fluid, Fig. 1 in the following conditions: 

Pipe diameter D = 0.025 m; 

Pipe length L = 0.015 m;  

Pressure difference of the flow: DP1 = 12 KPa, DP2 = 15 KPa, 

Magnetic induction B [0 – 0.4] T 

Fluid viscosity dynamic coefficient  = 0.112 Pas 

 Shear velocity 
 dV r

dr
  [s

-1
] 1000 

 

0 = 39.721B
4
 ‒ 132.358 B

3
 + 119.0925 B

2
 + 10.280 B + 0.10815 

the deformation for the MR132 fluid,
 0  , [KPa] (Han et al., 2009; Hong 

et al., 2008). 
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In Fig. 2, deformation varies depending on the size of the magnetic 

induction B. 

 

 
Fig. 2 ‒ Variation of the deformation stress depending on the size 

 of the magnetic induction B. 

 

The plastic deformation 0 increases as the magnetic induction B 

increases. The increase gradient is higher in high inductions. 

Fig. 3 presents the variation of the fluid plug radius for two constant 

pressure values of the flow, depending on the magnetic induction B value. 

 

 
Fig. 3 ‒ Variation of the fluid plug radius. 

 

The r0 radius of the fluid plug increases as the magnetic induction B 

increases at a constant pressure difference. The increase is determined by the 

size of the stress 0 . 
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At constant values of the magnetic induction B, the r0 radius of the fluid 

plugs decreases as the pressure difference increases.  

Fig. 4 presents the velocity variation of the fluid plug for two constant 

pressure values of the flow, depending on the size of the magnetic induction B. 

 

 
Fig. 4 ‒ Variation of the fluid plug velocity. 

 

The travel velocity V0 of the fluid plug decreases as the magnetic 

induction B increases, at constant values of the pressure difference. 

At constant values of the magnetic induction B, the V0 decreases as the 

pressure difference determining the flow increases. 

Figs. 5 and 6 present the variation of local flow velocity V(r) of the 

magnetorheological fluid in relation to radius r for two constant pressure values 

of flow, depending on the size of the magnetic induction B. 
 

 
 

Fig. 5 ‒ Variation of the local velocity V(B,r).  



Bul. Inst. Polit. Iaşi, Vol. 62 (66), Nr. 4, 2016                                     69 

 

 

 
 

Fig. 6 ‒ Variation of the local velocity V(B, r).  

 

The local flow velocity V(r) in the space between the fluid plug and the 

pipe wall has an approximately parabolic variation in relation to current radius r 

and decreases as the magnetic induction B increases. 

For a magnetic induction B = cst.; r = cst. the local velocity V(r) 

increases as the pressure difference increases. 

 

5. Conclusions 

 

The rheological character of the fluid is strongly influenced by the 

magnetic induction value. 

The r0 radius of the fluid plug increases as the intensity of the applied 

magnetic field rises, and for constant magnetic induction values, it decreases as 

pressure difference rises.  

The travel velocity V0 of the fluid plug is influenced both by the 

magnetic induction value and by the pressure difference of the flow.  

The local flow velocity of the fluid V(r) in the space between the fluid 

plug and the pipe wall has an approximately parabolic variation in relation to 

the current radius r. At a constant pressure difference, the velocity V(r) 

decreases as the magnetic induction B increases. 

For a magnetic induction of B = cst., at the radius r = cst., the velocity 

V(r) increases as the pressure difference increases. 
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CURGEREA LAMINARĂ A FLUIDULUI 

 MAGNETOREOLOGIC PRINTR-UN TUB DE CURENT CU 

 SECȚIUNE CIRCULARĂ 

 

(Rezumat) 

 

Fluidele magnetoreologice sunt nenewtoniene de tip Bingham. În cazul 

mișcării acestora, caracteristicile cinematice și energetice ale curgerii diferă de cele ale 

fluidului Newtonian. Lichidele magnetoreologice sunt caracterizate de faptul că 

energizarea acestora se realizează prin intermediul unui câmp magnetic exterior care 

influențează efortul de alunecare. Specific mișcării fluidelor magnetoreologice de tip 

Bingham este formarea unui dop fluid în zona centrală care se deplasează cu viteză 

constantă. Lucrarea are ca scop analiza influenței câmpului magnetic exterior aplicat 

fluidului magnetoreologic asupra vitezei de curgere a acestuia. Modelarea numerică a 

fenomenului, arată că mărimea câmpului magnetic are influență considerabilă asupra 

vitezei de curgere a fluidului. 

 


